Verdichtungsverhältnis: Unterschied zwischen den Versionen

Aus Vespa Lambretta Wiki
Zur Navigation springen Zur Suche springen
(20 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 7: Zeile 7:


Das Verdichtungsverhältnis ist nicht zu verwechseln mit der Kompression, die zwar einen Zusammenhang mit dem Verdichtungsverhältnis hat, aber es gibt weitere Faktoren die die Kompression beeinflussen!
Das Verdichtungsverhältnis ist nicht zu verwechseln mit der Kompression, die zwar einen Zusammenhang mit dem Verdichtungsverhältnis hat, aber es gibt weitere Faktoren die die Kompression beeinflussen!
Im Wesentlichen die Dichtigkeit des Motors, z.B. Zustand der Kolbenringe, Kolbenspiel, Kolbenringstossspiel, Menge an Öl zwischen Kolben und Zylinderlaufbahn, aber auch wie schnell komprimiert wird.
Im Wesentlichen ist das die "dynamische" Dichtigkeit des Motors (z.B. Zustand der Kolbenringe, Kolbenspiel, Kolbenringstossspiel, Menge an Öl zwischen Kolben und Zylinderlaufbahn) was bis zu einem gewissen Grad bedeutet: Je schneller man den Kickstarter beschleunigt, umso höher wird das Messergebnis für die Kompression ausfallen".


[[Bild:Verdichtungoa2.jpg‎]]
[[Bild:Verdichtungoa2.jpg‎]]
Zeile 13: Zeile 13:
===Geometrisches Verdichtungsverhältnis===
===Geometrisches Verdichtungsverhältnis===


Die geometrische Verdichtung ist eine rein theoretische Angabe. Sie geht davon aus, dass das gesamte Gasvolumen zu Beginn des Verdichtungstaktes (im UT) auf das Brennraumvolumen zum Ende des Verdichtungstaktes komprimiert werden kann, siehe <ref>H.W.Bönsch, Der schnellaufende Zweitaktmotor-Grundlagen, S102ff</ref>  bzw. <ref>Zweitakt Motoren Tuning, Teil 1, Christian Rieck, Seite 32 ff</ref>. Das geometrische Verdichtungsverhältnis wird beschrieben als das Verhältnis aus der Summe von Hubvolumen und Brennraumvolumen zu Brennraumvolumen.
Die geometrische Verdichtung ist eine rein theoretische Angabe. Sie geht davon aus, dass das gesamte Gasvolumen zu Beginn des Verdichtungstaktes (im UT) auf das Brennraumvolumen zum Ende des Verdichtungstaktes komprimiert werden kann, siehe <ref>H.W.Bönsch, Der schnellaufende Zweitaktmotor-Grundlagen, S102ff</ref>  bzw. <ref>Zweitakt Motoren Tuning, Teil 1, Christian Rieck, Seite 32 ff</ref>. Das geometrische Verdichtungsverhältnis wird beschrieben als das Verhältnis aus der Summe von Hubvolumen und Brennraumvolumen zu Brennraumvolumen:
 
p=(Vh+Vb)/Vb
p=(Vh+Vb)/Vb
Vh=Hubvolumen
Vh=Hubvolumen
Vb=Brennraumvolumen
Vb=Brennraumvolumen


Typische Grössenordnungen sind von 8:1 für originale Motoren bis 13:1 für getunte Vespa Motoren. Oberhalb 12:1 nimmt der Wirkungsgrad nur noch gering zu, während die mechanischen und thermischen Belastungen stark ansteigen!<ref>Zweitakt Motoren Tuning, Teil 1, Christian Rieck, Seite 38ff</ref> .
Typische Grössenordnungen sind 8:1 für originale Motoren bis 13:1 für getunte Vespa Motoren. Oberhalb 12:1 nimmt der Wirkungsgrad nur noch gering zu, während die mechanischen und thermischen Belastungen stark ansteigen!<ref>Zweitakt Motoren Tuning, Teil 1, Christian Rieck, Seite 38ff</ref> .


===Effektives Verdichtungsverhältnis===
===Effektives Verdichtungsverhältnis===
Zeile 27: Zeile 30:


p_e=(Ve+Vb)/Vb
p_e=(Ve+Vb)/Vb
Ve=Vh(1-ha/s)
Ve=Vh(1-ha/s)
ha=Höhe Auslasskante
ha=Höhe Auslasskante
s=Hub
s=Hub


Zeile 35: Zeile 41:
Streng genommen sind beide Angaben (eff./geom.) falsch, da durch Gasschwingungen des Ein- und Auslasses (Resonanzauspuffanlagen) im Idealfall eine Aufladung erfolgt <ref>H.W.Bönsch, Der schnellaufende Zweitaktmotor-Grundlagen, S102ff</ref>.
Streng genommen sind beide Angaben (eff./geom.) falsch, da durch Gasschwingungen des Ein- und Auslasses (Resonanzauspuffanlagen) im Idealfall eine Aufladung erfolgt <ref>H.W.Bönsch, Der schnellaufende Zweitaktmotor-Grundlagen, S102ff</ref>.


Je höher das Verdichtungsverhältnis ist, desto höher auch der Verbrennungsdruck und das Drehmoment und somit die Leistung. Allerdings steigt auch die thermische Belastung auf den Motor, weshalb in einigen Fachbüchern ein geom. Verdichtungsverhältnis von 12:1 und ein eff. Verdichtungsverhältnis von 7.5:1 als Richtwert für die Obergrenze genannt wird. Was nicht bedeutet, dass im Motorsport nicht wesentlich höhere Verdichtungsverhältnisse gefahren werden! Das Verdichtungsverhältnis beeinflusst die Motorcharakteristik in Bezug auf Drehmomentverlauf, maximaler Leistung und Drehfreudigkeit stark.
Je höher das Verdichtungsverhältnis ist, desto höher ist auch der Verbrennungsdruck, sowie das Drehmoment und somit die Leistung. Allerdings steigt auch die thermische Belastung auf den Motor, weshalb in einigen Fachbüchern ein geom. Verdichtungsverhältnis von 12:1 und ein eff. Verdichtungsverhältnis von 7.5:1 als Richtwert für die Obergrenze genannt wird. Was nicht bedeutet, dass im Motorsport nicht wesentlich höhere Verdichtungsverhältnisse gefahren werden! Das Verdichtungsverhältnis beeinflusst die Motorcharakteristik in Bezug auf Drehmomentverlauf, maximaler Leistung und Drehfreudigkeit stark.
Je höher die Verdichtung, desto höher ist (abhängig von Brennraumform, Zündung und Gemischaufbereitung) die Klingel- bzw. Klopfneigung und umso geringer die Ausdrehfreudigkeit.
Je höher die Verdichtung, desto höher ist (abhängig von Brennraumform, Zündung und Gemischaufbereitung) die Klingel- bzw. Klopfneigung und umso geringer die Ausdrehfreudigkeit.
Voraussetzung für eine hohe Verdichtung ist, dass entsprechend gute Kühlungsverhältnisse herrschen.
Voraussetzung für eine hohe Verdichtung ist, dass entsprechend gute Kühlungsverhältnisse herrschen.


Erhöhen kann man die geometrische und effektive Verdichtung, indem man das Brennraumvolumen verkleinert, was durch entnehmen von Zylinderfuss- oder Kopfdichtungen bzw. Abdrehen selbiger erfolgen kann. Gleichzeitig wird die effektive Verdichtung verringert, wenn man die Steuerzeiten verlängert, sprich: den Zylinder höher setzt und umgekehrt
Erhöhen kann man die geometrische und effektive Verdichtung, indem man das Brennraumvolumen verkleinert, was durch Ausdrehen/Anpassen der Brennraumkalotte erfolgen sollte. Eine weitere Möglichkeit ist das Entnehmen von Zylinderfuss- oder Kopfdichtungen bzw. Abdrehen selbiger. Hierbei verändert man aber unweigerlich auch die Quetschspalte, die vor allem bei hochverdichteten Motoren im Bereich 1.0-1.2 gehalten werden sollte (siehe [[Quetschspalte ermitteln]]).
Bitte hierzu jedoch den Artikel "Brennraum" beachten.
 
Die effektive Verdichtung wird z.B. verringert, wenn man die Steuerzeiten verlängert, sprich: den Zylinder höher setzt und umgekehrt. Bitte hierzu jedoch den Artikel [[Brennraum]] beachten.


Je höher ein Motor verdichtet ist, umso wichtiger ist die Ermittlung des exakten Verdichtungsverhältnisses, um Rückschlüsse auf die Belastungen des Motors führen zu können.
Je höher ein Motor verdichtet ist, umso wichtiger ist die Ermittlung des exakten Verdichtungsverhältnisses, um Rückschlüsse auf die Belastungen des Motors führen zu können.
Zeile 60: Zeile 67:
===Ermittlung des Brennraumvolumens===
===Ermittlung des Brennraumvolumens===


Das Ermitteln des Verdichtungsverhältnisses erfolgt über die Bestimmung des, meist unbekannten Brennraumvolumens. Dies kann durch geometrische Verfahren oder Auslitern (Volumenbestimmung) ermittelt werden.
Das Ermitteln des Verdichtungsverhältnisses erfolgt über die Bestimmung des meist unbekannten Brennraumvolumens. Dies kann durch geometrische Verfahren oder Auslitern (Volumenbestimmung) ermittelt werden.
Beide Verfahren bergen eine gewisse Ungenauigkeit und man muss sehr genau Arbeiten und idealerweise mehrmals Messen, um eine gewisse statistische Sicherheit zu haben. Hat man das Volumen mal bestimmt, kann man nach dem Herausnehmen von Dichtungen das neue Verhältnis relativ einfach und genau geometrisch bestimmen. Das herausgenommene "Dichtungsvolumen" errechnet sich zu Vd=PI*D^2/4*Hd.
Beide Verfahren bergen eine gewisse Ungenauigkeit und man muss sehr genau Arbeiten und idealerweise mehrmals Messen, um eine gewisse statistische Sicherheit zu haben. Hat man das Volumen mal bestimmt, kann man nach dem Herausnehmen von Dichtungen das neue Verhältnis relativ einfach und genau geometrisch bestimmen. Das herausgenommene "Dichtungsvolumen" errechnet sich zu Vd=PI*D^2/4*Hd.


Zu allererst:  Für ein ausreichend genaues Messergebnis muss der Motor meist ausgebaut oder mindestens teilzerlegt werden, weil der Zylinder je nach Brennraumform und Kerzenlochposition senkrecht stehen muss! Bei den meisten Brennraumformen bleibt im Bereich der Quetschfläche immer etwas Luft zurück und man erhält zu kleine Ergebnisse. Natürlich kann man das in Kauf nehmen, denn der wahre Wert wird vermutlich 1 2 ml grösser sein, also liegt man bei der Berechnung der Verdichtung „auf der sicheren Seite“. Für eine schnelle Analyse ob man unter 12:1 liegt, mag das ausreichend sein, als Basis für eine solide Motoreinstellung aber nicht.
Für ein ausreichend genaues Messergebnis muss der Motor meist ausgebaut oder mindestens teilzerlegt werden, weil der Zylinder je nach Brennraumform und Kerzenlochposition senkrecht stehen muss, damit alle Luft entweichen kann! Bei den meisten Brennraumformen bleibt im Bereich der Quetschfläche oder auch in der Brennraumkalotte immer etwas Luft zurück und man erhält zu kleine Ergebnisse. Natürlich kann man das in Kauf nehmen, denn der wahre Wert wird vermutlich grösser sein, also liegt man bei der Berechnung der Verdichtung „auf der sicheren Seite“. Für eine schnelle Analyse ob man unter 12:1 liegt, mag das ausreichend sein, als Basis für eine solide Motoreinstellung aber nicht!


Originale


'''Werkzeuge:'''
====Werkzeuge====


* Zweitaktöl vollsynthetisch (dünnflüssig)
* Zweitaktöl vollsynthetisch (mögl. dünnflüssig)
* Spritze 20ml-24ml (min. 1ml Teilung)
* Spritze 20ml-24ml (min. 1ml Teilung)
* Spritze 5ml (0.2ml Teilung)
* Spritze 5ml (0.2ml Teilung)
Zeile 86: Zeile 94:
# Bei ausgebautem Zylinderkopf: Über die Einzelvolumen des Kopfs und der Zylinder-Kolben-Kombination
# Bei ausgebautem Zylinderkopf: Über die Einzelvolumen des Kopfs und der Zylinder-Kolben-Kombination


Die Variante 1.) ist zu bevorzugen, wenn der Motor noch auf der Werkbank steht, da diese sehr genaue Messergebnisse ergibt. Die Variante 2.) wenn der Motorblock bereits eingebaut ist und man z.B. einen neuen Zylinder testen will. Die Variante 3.) wenn man nur den Kopf abnehmen will. Sie etwas aufwändiger, weil man mehr Auslitern muss und unter Umständen auch etwas ungenauer. Vor allem bei Kolbenüberstand muss man etwas mehr überlegen. Will man wenig Ausbauaufwand haben, bietet sich diese Variante allerdings an.
Die Variante 1.) ist zu bevorzugen, wenn der Motor noch auf der Werkbank steht, da diese sehr genaue Messergebnisse ergibt. Die Variante 2.) wenn der Motorblock bereits eingebaut ist und man z.B. einen neuen Zylinder testen will. Die Variante 3.) wenn alles verbaut ist und man nur den Kopf abnehmen will. Sie etwas aufwändiger, weil man mehr Auslitern muss und dadurch unter Umständen auch etwas ungenauer. Will man wenig Ausbauaufwand haben, bietet sich diese Variante allerdings an.


'''1.) Ausgebauter Motorblock'''
====Variante 1.) Auslitern bei ausgebautem Motorblock====


Der zusammengebaute Motorblock steht ohne Kopf, am Besten in einem schwenkbaren Ständer, stabil vor einem. Laufbahn im oberen Bereich etwas einfetten und Kolben auf OT bringen. Das Fett soll den Brennraum etwas abdichten, aber den Spalt zwischen Kolben und Zylinderwand nicht ausfüllen. Das Lüfterrad mit entsprechendem Werkzeug im OT sicher blockieren.
Der zusammengebaute Motorblock steht ohne Kopf, am Besten in einem schwenkbaren Ständer, stabil vor einem. Nun kann man die Laufbahn im oberen Bereich minimal einfetten und Kolben auf OT bringen. Das Fett soll den Brennraum etwas abdichten, aber den Spalt zwischen Kolben und Zylinderwand nicht ausfüllen. Den Kolben über das Lüfterrad im OT sicher blockieren.


Nun den Zylinderkopf nehmen, Kerze mit korrektem Wärmewert einschrauben und deren Ende im Gewinde merken/markieren. Bis hier hin wird nun später befüllt. Die Regel: „halbes Kerzenloch befüllen“ ist je nach verwendetem Wärmewert (Isolatorvolumen) zu ungenau. Das Kerzenvolumen wird darum später separat ermittelt!
Nun den Zylinderkopf nehmen, Kerze mit korrektem Wärmewert einschrauben und deren Ende im Gewinde merken/markieren. Bis hier hin wird nun später befüllt. Die Regel: „halbes Kerzenloch befüllen“ ist je nach verwendetem Wärmewert (Isolatorvolumen) zu ungenau. Das Kerzenvolumen wird darum später separat ermittelt!


Den Kopf mit den entsprechenden Dichtungen (für gewünschte QS) montieren und am Besten alle vier Muttern verwenden (vor allem bei mehreren CU-Dichtungen). Muttern mit vorgeschriebenem Moment anziehen (z.B. Alu177ccm=17Nm).
Den Kopf mit den entsprechenden Dichtungen (für gewünschte [[Quetschspalte ermitteln|Quetschspalte]]) montieren und am Besten alle vier Muttern verwenden (vor allem bei mehreren CU-Dichtungen). Muttern mit vorgeschriebenem Moment anziehen (z.B. Alu 177ccm=17Nm).
Den Motor mit seiner Zylinderachse nahezu senkrecht stellen, aber soweit neigen, dass Luft beim Befüllen mit Öl komplett durch das Loch entweichen kann. Hier entstehen schnell grössere Messfehler.
Den Motor mit seiner Zylinderachse nahezu senkrecht stellen, aber soweit neigen, dass Luft beim Befüllen mit Öl komplett durch das Loch entweichen kann.  
Je nach Brennraumgrösse Spritze mit 20ml (177ccm) oder 25ml (210ccm) aufziehen und durchs Kerzenloch den Brennraum füllen. Den Motor dabei etwas hin und her bewegen oder darauf klopfen, bis sicher alle Luftblasen aus dem Brennraum entwichen sind. Messfehler können hier sein: Verbleibende Luft in den Spalten zwischen Kopf (bei versenkten) und Zylinder sowie in den Spalten zwischen Feuersteg und Zylinderlauffläche. Man bedenke: Schon 0.5ml können je nach Brennraumgrösse und Hubraum zu grösseren Fehlern führen.
 
Zum Schluss die plane Dichtfläche der Kerze waagerecht ausrichten und das Kerzenloch bis zum zuvor markierten Zündkerzenende befüllen.
Je nach Brennraumgrösse eine Spritze mit z.B. exakt 20ml (177ccm) oder 24ml (210ccm) aufziehen (Wert notieren) und durchs Kerzenloch den Brennraum befüllen:


[[Bild:Auslitern Vespa 1.jpg]]
[[Bild:Auslitern Vespa 1.jpg]]


Damit die Luftblasen alle rauskommen, den Motor kreisend bewegen, schwenken und zwei bis dreimal gegen den Zylinder klopfen. So lösen sich Luftblasen in der QS, gut erkennbar am Blubbern. Nicht zu viel schlagen, sonst sickert das Öl evtl. am Kolbenring vorbei.
Damit alle Luftblasen sicher entweichen, den Motor kreisend bewegen und mehrmals leicht mit einem Holzstück gegen den Zylinder klopfen. So lösen sich Luftblasen in der engen QS, gut erkennbar am Blubbern. Nicht zu viel schlagen, sonst sickert das Öl evtl. am Kolbenringstoss vorbei.
 
Messfehler können hier sein: Verbleibende Luft in den Spalten zwischen Kopf (bei versenkten) und Zylinder sowie in den Spalten zwischen Feuersteg und Zylinderlauffläche. Man bedenke: Schon 0.5ml können je nach Brennraumgrösse und Hubraum zu grösseren Fehlern führen.
 
Zum Schluss die plane Dichtfläche der Kerze waagerecht ausrichten und das Kerzenloch bis zum zuvor markierten Zündkerzenende befüllen.
 
Sollte die 20ml Spritze nicht ausreichen, kann man mit der 5ml Spritze weitermachen. Durch deren feinere Unterteilung wird zudem die Ablesegenauigkeit etwas verbessert. Sofern man die richtige Spritze gekauft hat, sollte die Ablesung wie hier ausreichend genau möglich sein. Im Fall des Parmakit 177 Aluguss Kopfes (parallele QS 1.2mm): 20ml-4ml=16ml
Sollte die 20ml Spritze nicht ausreichen, kann man mit der 5ml Spritze weitermachen. Durch deren feinere Unterteilung wird zudem die Ablesegenauigkeit etwas verbessert. Sofern man die richtige Spritze gekauft hat, sollte die Ablesung wie hier ausreichend genau möglich sein. Im Fall des Parmakit 177 Aluguss Kopfes (parallele QS 1.2mm): 20ml-4ml=16ml


Zeile 108: Zeile 121:
Danach den Brennraum mit Spritze und Schlauch leersaugen, Zylinderkopf abschrauben, Kolben etwas Richtung UT schieben und alles Öl wegwischen. Die Messung 3x wiederholen und den Mittelwert bilden. Das erhöht die Genauigkeit der Messung und fördert Messfehler zutage.
Danach den Brennraum mit Spritze und Schlauch leersaugen, Zylinderkopf abschrauben, Kolben etwas Richtung UT schieben und alles Öl wegwischen. Die Messung 3x wiederholen und den Mittelwert bilden. Das erhöht die Genauigkeit der Messung und fördert Messfehler zutage.


Anschliessend kann man noch die Kerze „auslitern“. Das ist bei in der Largframeklasse üblichen Wärmewerten (NGK B7-B9) aber vermutlich selten mehr als 0.4 ml. Im Beispielbild unten eine Langgewindekerze Bosch WR3CC mit ca. 0.2 ml bzw. ccm, eine NGK B9ES liegt ebenfalls bei 0.2ml. Hier wird nun klar, dass es bei den Vespa-üblichen Brennraumgrössen ausreicht, nur bis zur Unterkante des Kerzengewindes auszulitern: Addiert man einen Schätzwert von 0.2ml auf das ermittelte Brennraumvolumen, wird der Fehler vernachlässigbar klein sein.
Anschliessend kann man noch die Kerze "auslitern". Das ist bei in der Largframeklasse üblichen Wärmewerten (NGK B7-B9) aber vermutlich selten mehr als 0.4 ml. Im Beispielbild unten eine Langgewindekerze Bosch WR3CC mit ca. 0.2 ml bzw. ccm, eine NGK B9ES liegt ebenfalls bei 0.2ml. Hier wird nun klar, dass es bei den Vespa-üblichen Brennraumgrössen ausreicht, nur bis zur Unterkante des Kerzengewindes auszulitern: Addiert man einen Schätzwert von 0.2ml auf das ermittelte Brennraumvolumen, wird der Fehler vernachlässigbar klein sein.


[[Bild:Auslitern Vespa 3.jpg]]
[[Bild:Auslitern Vespa 3.jpg]]
Zeile 118: Zeile 131:
Zur Genauigkeit: Die grössten Messfehler treten aufgrund von verbleibenden Luftblasen im Brennraum und bei Spritzen mit zu grober Skaleneinteilung auf. Ideal wäre eine 20ml Spritze, deren Skaleneinteilung möglichst fein ist (z.B. 0.1 ml). Dafür müsste diese aber sehr lang und dünn sein, was am Markt schwer zu finden ist. Eine Alternative ist die sog. Bürette nach Mohr, deren Handhabung ist aber eher unpraktisch.
Zur Genauigkeit: Die grössten Messfehler treten aufgrund von verbleibenden Luftblasen im Brennraum und bei Spritzen mit zu grober Skaleneinteilung auf. Ideal wäre eine 20ml Spritze, deren Skaleneinteilung möglichst fein ist (z.B. 0.1 ml). Dafür müsste diese aber sehr lang und dünn sein, was am Markt schwer zu finden ist. Eine Alternative ist die sog. Bürette nach Mohr, deren Handhabung ist aber eher unpraktisch.


'''2.) Bei ausgebautem Zylinder & Kolben & Kopf'''
====Variante 2.) Auslitern bei ausgebautem Zylinder & Kolben & Kopf====


Zylinder, Kolben und Kopf liegen ausgebaut auf der Werkbank. Es werden die vier Zylinderstehbolzen und diverse Unterlegscheiben benötigt, um Kopf und Zylinder zusammenzuhalten. Die Kopfdichtungen werden je nach Grösse und Durchmesser ebenfalls benötigt. Etwas Fett dichtet die Flächen zwischen Kopf und Zylinder.
Zylinder, Kolben und Kopf liegen ausgebaut auf der Werkbank. Es werden die vier Zylinderstehbolzen und diverse Unterlegscheiben benötigt, um Kopf und Zylinder zusammenzuhalten. Die Kopfdichtungen werden je nach Grösse und Durchmesser ebenfalls benötigt. Etwas Fett dichtet die Flächen zwischen Kopf und Zylinder.
Zeile 132: Zeile 145:
Nun schiebt man den Kolben in den Zylinder bis zum Anschlag und fixiert ihn dort falls er nicht hält. Der Rest erfolgt wie in Variante 1.)
Nun schiebt man den Kolben in den Zylinder bis zum Anschlag und fixiert ihn dort falls er nicht hält. Der Rest erfolgt wie in Variante 1.)


'''3.) Bestimmung der Einzelvolumen'''
====Variante 3.) Bestimmung der Einzelvolumen====


Wer den Motor nicht ausbauen will, kann das Brennraumvolumen ebenfalls über die Einzelvolumen bestimmen und zusammenrechnen. Hierbei muss lediglich der Zylinderkopf abgenommen werden und der Kolben in der OT-Position arretiert werden. Vor allem bei im Zylinder versenkten Zylinderköpfen, wie dem Parmakit 177 oder dem BGM 177 ist dies zwar einfacher möglich, als bei Zylindern mit Kolbenüberstand (hier muss man sich mit zusätzlichen Dichtungen behelfen). In beiden Fällen wird man jedoch zuviel Volumen messen und muss es später entsprechend abziehen.
Wer den Motor nicht ausbauen will, kann das Brennraumvolumen ebenfalls über die Einzelvolumen bestimmen und zusammenrechnen. Hierbei muss lediglich der Zylinderkopf abgenommen werden und der Kolben in der OT-Position arretiert werden. Vor allem bei im Zylinder versenkten Zylinderköpfen, wie dem Parmakit 177 oder dem BGM 177 ist dies zwar einfacher möglich, als bei Zylindern mit Kolbenüberstand (hier muss man sich mit zusätzlichen Dichtungen behelfen). In beiden Fällen wird man jedoch zuviel Volumen messen und muss es später entsprechend abziehen.
Zeile 147: Zeile 160:
[[Bild:Auslitern Vespa 7.jpg]]
[[Bild:Auslitern Vespa 7.jpg]]


Sehr gut zu sehen, wie sich die Luftblasen im Bereich der Quetschspalte „halten“ obwohl der Kopf fast senkrecht steht. Dies würde man beim Auslitern nach 1.) nicht sehen, darum ist hier Klopfen und Schütteln sehr wichtig.
Auch bei den „Tauchköpfen“ ist ein Auslitern möglich. Hier muss man den versenkten Teil vom gemessenen Volumen des Zylinders abziehen. Die Höhe des eintauchenden Teils muss dabei exakt bestimmt werden, um keine grösseren Messfehler zu machen: Wer für die Höhe beispielsweise statt 2.5mm nur 2.3mm misst, macht einen Fehler von 0.6 ccm/ml.
[[Bild:Auslitern Vespa 8.jpg]]


Der Vorteil der Variante 3.): Das Kerzenvolumen ist gleich mit berücksichtigt. Grössere Messfehler können beim Festschrauben der Plexiglasscheibe entstehen, wenn sich diese wölbt!





Version vom 19. Mai 2020, 19:24 Uhr

Einleitung

Beim Verdichtungsverhältnis unterscheidet man zwei Begriffe:

  • Geometrisches Verdichtungsverhältnis
  • Effektives Verdichtungsverhältnis

Das Verdichtungsverhältnis ist nicht zu verwechseln mit der Kompression, die zwar einen Zusammenhang mit dem Verdichtungsverhältnis hat, aber es gibt weitere Faktoren die die Kompression beeinflussen! Im Wesentlichen ist das die "dynamische" Dichtigkeit des Motors (z.B. Zustand der Kolbenringe, Kolbenspiel, Kolbenringstossspiel, Menge an Öl zwischen Kolben und Zylinderlaufbahn) was bis zu einem gewissen Grad bedeutet: Je schneller man den Kickstarter beschleunigt, umso höher wird das Messergebnis für die Kompression ausfallen".

Verdichtungoa2.jpg

Geometrisches Verdichtungsverhältnis

Die geometrische Verdichtung ist eine rein theoretische Angabe. Sie geht davon aus, dass das gesamte Gasvolumen zu Beginn des Verdichtungstaktes (im UT) auf das Brennraumvolumen zum Ende des Verdichtungstaktes komprimiert werden kann, siehe [1] bzw. [2]. Das geometrische Verdichtungsverhältnis wird beschrieben als das Verhältnis aus der Summe von Hubvolumen und Brennraumvolumen zu Brennraumvolumen:

p=(Vh+Vb)/Vb

Vh=Hubvolumen

Vb=Brennraumvolumen

Typische Grössenordnungen sind 8:1 für originale Motoren bis 13:1 für getunte Vespa Motoren. Oberhalb 12:1 nimmt der Wirkungsgrad nur noch gering zu, während die mechanischen und thermischen Belastungen stark ansteigen![3] .

Effektives Verdichtungsverhältnis

Im Gegensatz zum geometrischen Verdichtungsverhältnis berücksichtigt das effektive Verdichtungsverhätnis die Tatsache, dass beim Zweitakter Auslass und Überströmer während des Verdichtungstaktes noch einige Zeit offen stehen und Gas damit entweichen kann. Das zuletzt schliessende Auslassfenster bestimmt hier die Grösse der effektiven Verdichtung: Je länger die Auslasssteuerzeit ist, bzw. je höher das Auslass liegt, um so geringer ist der sogenannte Nutzhub und damit auch die effektive Verdichtung. Der Wert der "wahren" bzw. effektiven Verdichtung hängt zudem vom Füllungsgrad ab und ändert sich mit Drehzahl, Betriebszustand und Wetterverhältnissen [4]

p_e=(Ve+Vb)/Vb

Ve=Vh(1-ha/s)

ha=Höhe Auslasskante

s=Hub

Praxisbezug

Streng genommen sind beide Angaben (eff./geom.) falsch, da durch Gasschwingungen des Ein- und Auslasses (Resonanzauspuffanlagen) im Idealfall eine Aufladung erfolgt [5].

Je höher das Verdichtungsverhältnis ist, desto höher ist auch der Verbrennungsdruck, sowie das Drehmoment und somit die Leistung. Allerdings steigt auch die thermische Belastung auf den Motor, weshalb in einigen Fachbüchern ein geom. Verdichtungsverhältnis von 12:1 und ein eff. Verdichtungsverhältnis von 7.5:1 als Richtwert für die Obergrenze genannt wird. Was nicht bedeutet, dass im Motorsport nicht wesentlich höhere Verdichtungsverhältnisse gefahren werden! Das Verdichtungsverhältnis beeinflusst die Motorcharakteristik in Bezug auf Drehmomentverlauf, maximaler Leistung und Drehfreudigkeit stark. Je höher die Verdichtung, desto höher ist (abhängig von Brennraumform, Zündung und Gemischaufbereitung) die Klingel- bzw. Klopfneigung und umso geringer die Ausdrehfreudigkeit. Voraussetzung für eine hohe Verdichtung ist, dass entsprechend gute Kühlungsverhältnisse herrschen.

Erhöhen kann man die geometrische und effektive Verdichtung, indem man das Brennraumvolumen verkleinert, was durch Ausdrehen/Anpassen der Brennraumkalotte erfolgen sollte. Eine weitere Möglichkeit ist das Entnehmen von Zylinderfuss- oder Kopfdichtungen bzw. Abdrehen selbiger. Hierbei verändert man aber unweigerlich auch die Quetschspalte, die vor allem bei hochverdichteten Motoren im Bereich 1.0-1.2 gehalten werden sollte (siehe Quetschspalte ermitteln).

Die effektive Verdichtung wird z.B. verringert, wenn man die Steuerzeiten verlängert, sprich: den Zylinder höher setzt und umgekehrt. Bitte hierzu jedoch den Artikel Brennraum beachten.

Je höher ein Motor verdichtet ist, umso wichtiger ist die Ermittlung des exakten Verdichtungsverhältnisses, um Rückschlüsse auf die Belastungen des Motors führen zu können.

Um eine grobe Vorstellung davon zu bekommen, in welchen Grenzen sich die Verdichtungsverhältnisse im Vespa-Bereich in etwa bewegen, sind in der nachfolgenden Tabelle exemplarisch einige Werte für die beiden üblichen Largeframe-Klassen 177ccm und 210ccm berechnet. Originalzylinder haben teilweise weitaus geringere geom. Verdichtungsverhältnisse, in der italienischen Typbeschreibung wird für eine Sprint 150 z.B. 7.4:1 genannt. Bei den meisten Tuningzylindern liegt das geom. Verdichtungsverhältnis wohl über 10:1. Hinweis: Die Auslasshöhe ist das Mass zwischen Kolbenstellung OT und Auslassöffnung.

Verdichtungsverhältnisse 177 210.jpg

In der Tabelle kann man gut erkennen, dass allein die Verwendung einer 60mm Langhubwelle auf einem 177er Kit (mit 57mm Hub und 12:1), ohne das Brennraumvolumen anzupassen, zu einer Erhöhung der geometrischen und effektiven Verdichtung führt (bei gleicher Quetschspalte!). Durch das Hochfräsen des Auslasses wird die effektive Verdichtung wiederum verringert. Gleichzeitig bewirkt das Tiefersetzen des Zylinders neben kürzeren Steuerzeiten eine Erhöhung der effektiven Verdichtung. Im Kopf behalten sollte man, dass durch Aufladungseffekte wie z.B. durch (Resonanz-)Auspuffanlagen sich ebenfalls die eff. und geom. Verdichtung erhöht.

Als Grenzwert für die geometrische Verdichtung werden in verschiedenen Quellen 12:1 genannt, weil darüber der Wirkungsgrad nur mässig ansteigt, die thermische Belastung aber umso mehr. Ab ca. 14:1 sinkt der effektive Wirkungsgrad sogar wieder. Zu diesem Thema sei der Klassiker Zweitakt-Tuning Teil 1 von Christian Rieck ab Seite 32 ff oder das Handbuch für Verbrennungsmotoren, 5. Aufl. von Richard van Basshuysen/MTZ Fachbuch, Seite 15ff. empfohlen!

Ob man nun die geometrische oder die effektive Verdichtung beurteilt, muss jeder für sich selbst herausfinden. Die Beurteilung und Eineziehung beider Grössen erscheint sinnvoll: Ist die geometrische UND die effektive Verdichtung sehr hoch, ist die Wahrscheinlichkeit hoch, dass der Motor eher heiss läuft und starker mechanischer Belastung ausgesetzt ist. Dies beeinträchtigt die Lebensdauer.

Durch Vergrösserung des Kopfvolumens (Ausdrehen der Kalotte) verringert man die Verdichtung. Das Vergrössern des Brennraumvolumens durch Unterlegen weiterer Dichtungen ist dagegen nur begrenzt möglich: Gerade bei hochverdichteten Motoren sollte man die Quetschkante nach Möglichkeit im Bereich zwischen 1.0 und 1.2 mm halten, um Klingeln und Hitzenestern vorzubeugen (siehe [6]).

Ermittlung des Brennraumvolumens

Das Ermitteln des Verdichtungsverhältnisses erfolgt über die Bestimmung des meist unbekannten Brennraumvolumens. Dies kann durch geometrische Verfahren oder Auslitern (Volumenbestimmung) ermittelt werden. Beide Verfahren bergen eine gewisse Ungenauigkeit und man muss sehr genau Arbeiten und idealerweise mehrmals Messen, um eine gewisse statistische Sicherheit zu haben. Hat man das Volumen mal bestimmt, kann man nach dem Herausnehmen von Dichtungen das neue Verhältnis relativ einfach und genau geometrisch bestimmen. Das herausgenommene "Dichtungsvolumen" errechnet sich zu Vd=PI*D^2/4*Hd.

Für ein ausreichend genaues Messergebnis muss der Motor meist ausgebaut oder mindestens teilzerlegt werden, weil der Zylinder je nach Brennraumform und Kerzenlochposition senkrecht stehen muss, damit alle Luft entweichen kann! Bei den meisten Brennraumformen bleibt im Bereich der Quetschfläche oder auch in der Brennraumkalotte immer etwas Luft zurück und man erhält zu kleine Ergebnisse. Natürlich kann man das in Kauf nehmen, denn der wahre Wert wird vermutlich grösser sein, also liegt man bei der Berechnung der Verdichtung „auf der sicheren Seite“. Für eine schnelle Analyse ob man unter 12:1 liegt, mag das ausreichend sein, als Basis für eine solide Motoreinstellung aber nicht!

Originale

Werkzeuge

  • Zweitaktöl vollsynthetisch (mögl. dünnflüssig)
  • Spritze 20ml-24ml (min. 1ml Teilung)
  • Spritze 5ml (0.2ml Teilung)
  • Niedrigviskoses, also sehr flüssiges Öl (vollsynth. 2T)
  • Optional: Spritze 1ml (0.01ml Teilung)
  • 10cm Schlauch für Spritze
  • Halbwegs genauer (!) Messschieber
  • Lüfterradblockierer
  • Optional: Plexiglasscheibe ca. 5mm, ca. 100x100mm
  • Lötzinn (D=1.5-2.5mm) + gutes Gewebe-Klebeband

Für die Angabe des Volumens kann entweder [ml] oder [ccm] als Einheit verwendet werden. 1ml entsprechen 1ccm

Drei mögliche Varianten zum Auslitern

  1. Bei komplett montiertem aber aus dem Rahmen ausgebauten Motor
  2. Bei ausgebauter Zylinder-Kolben-Kopf Kombination (mit Abstandshalter in der Quetschspalte)
  3. Bei ausgebautem Zylinderkopf: Über die Einzelvolumen des Kopfs und der Zylinder-Kolben-Kombination

Die Variante 1.) ist zu bevorzugen, wenn der Motor noch auf der Werkbank steht, da diese sehr genaue Messergebnisse ergibt. Die Variante 2.) wenn der Motorblock bereits eingebaut ist und man z.B. einen neuen Zylinder testen will. Die Variante 3.) wenn alles verbaut ist und man nur den Kopf abnehmen will. Sie etwas aufwändiger, weil man mehr Auslitern muss und dadurch unter Umständen auch etwas ungenauer. Will man wenig Ausbauaufwand haben, bietet sich diese Variante allerdings an.

Variante 1.) Auslitern bei ausgebautem Motorblock

Der zusammengebaute Motorblock steht ohne Kopf, am Besten in einem schwenkbaren Ständer, stabil vor einem. Nun kann man die Laufbahn im oberen Bereich minimal einfetten und Kolben auf OT bringen. Das Fett soll den Brennraum etwas abdichten, aber den Spalt zwischen Kolben und Zylinderwand nicht ausfüllen. Den Kolben über das Lüfterrad im OT sicher blockieren.

Nun den Zylinderkopf nehmen, Kerze mit korrektem Wärmewert einschrauben und deren Ende im Gewinde merken/markieren. Bis hier hin wird nun später befüllt. Die Regel: „halbes Kerzenloch befüllen“ ist je nach verwendetem Wärmewert (Isolatorvolumen) zu ungenau. Das Kerzenvolumen wird darum später separat ermittelt!

Den Kopf mit den entsprechenden Dichtungen (für gewünschte Quetschspalte) montieren und am Besten alle vier Muttern verwenden (vor allem bei mehreren CU-Dichtungen). Muttern mit vorgeschriebenem Moment anziehen (z.B. Alu 177ccm=17Nm). Den Motor mit seiner Zylinderachse nahezu senkrecht stellen, aber soweit neigen, dass Luft beim Befüllen mit Öl komplett durch das Loch entweichen kann.

Je nach Brennraumgrösse eine Spritze mit z.B. exakt 20ml (177ccm) oder 24ml (210ccm) aufziehen (Wert notieren) und durchs Kerzenloch den Brennraum befüllen:

Auslitern Vespa 1.jpg

Damit alle Luftblasen sicher entweichen, den Motor kreisend bewegen und mehrmals leicht mit einem Holzstück gegen den Zylinder klopfen. So lösen sich Luftblasen in der engen QS, gut erkennbar am Blubbern. Nicht zu viel schlagen, sonst sickert das Öl evtl. am Kolbenringstoss vorbei.

Messfehler können hier sein: Verbleibende Luft in den Spalten zwischen Kopf (bei versenkten) und Zylinder sowie in den Spalten zwischen Feuersteg und Zylinderlauffläche. Man bedenke: Schon 0.5ml können je nach Brennraumgrösse und Hubraum zu grösseren Fehlern führen.

Zum Schluss die plane Dichtfläche der Kerze waagerecht ausrichten und das Kerzenloch bis zum zuvor markierten Zündkerzenende befüllen.

Sollte die 20ml Spritze nicht ausreichen, kann man mit der 5ml Spritze weitermachen. Durch deren feinere Unterteilung wird zudem die Ablesegenauigkeit etwas verbessert. Sofern man die richtige Spritze gekauft hat, sollte die Ablesung wie hier ausreichend genau möglich sein. Im Fall des Parmakit 177 Aluguss Kopfes (parallele QS 1.2mm): 20ml-4ml=16ml

Auslitern Vespa 2.jpg

Danach den Brennraum mit Spritze und Schlauch leersaugen, Zylinderkopf abschrauben, Kolben etwas Richtung UT schieben und alles Öl wegwischen. Die Messung 3x wiederholen und den Mittelwert bilden. Das erhöht die Genauigkeit der Messung und fördert Messfehler zutage.

Anschliessend kann man noch die Kerze "auslitern". Das ist bei in der Largframeklasse üblichen Wärmewerten (NGK B7-B9) aber vermutlich selten mehr als 0.4 ml. Im Beispielbild unten eine Langgewindekerze Bosch WR3CC mit ca. 0.2 ml bzw. ccm, eine NGK B9ES liegt ebenfalls bei 0.2ml. Hier wird nun klar, dass es bei den Vespa-üblichen Brennraumgrössen ausreicht, nur bis zur Unterkante des Kerzengewindes auszulitern: Addiert man einen Schätzwert von 0.2ml auf das ermittelte Brennraumvolumen, wird der Fehler vernachlässigbar klein sein.

Auslitern Vespa 3.jpg

Den Mittelwert des Brennraumvolumens notiert man sich dann z.B auf dem Klebeband am Lötzinn, mit dem zuvor die QS ermittelt wurde. So hat man die Werte schnell protokolliert und kann später darauf zurückgreifen.

Die geometrische Verdichtung errechnet sich mit den oben genannten Formeln. Im Beispiel oben (187+16)/16 = 12.7 (:1)

Zur Genauigkeit: Die grössten Messfehler treten aufgrund von verbleibenden Luftblasen im Brennraum und bei Spritzen mit zu grober Skaleneinteilung auf. Ideal wäre eine 20ml Spritze, deren Skaleneinteilung möglichst fein ist (z.B. 0.1 ml). Dafür müsste diese aber sehr lang und dünn sein, was am Markt schwer zu finden ist. Eine Alternative ist die sog. Bürette nach Mohr, deren Handhabung ist aber eher unpraktisch.

Variante 2.) Auslitern bei ausgebautem Zylinder & Kolben & Kopf

Zylinder, Kolben und Kopf liegen ausgebaut auf der Werkbank. Es werden die vier Zylinderstehbolzen und diverse Unterlegscheiben benötigt, um Kopf und Zylinder zusammenzuhalten. Die Kopfdichtungen werden je nach Grösse und Durchmesser ebenfalls benötigt. Etwas Fett dichtet die Flächen zwischen Kopf und Zylinder.

Auslitern Vespa 4.jpg

Von dem Stück Lötzinn, mit dem man zuvor die Quetschspalte ermittelt hat, zwickt man sich vorsichtig zwei winzige Stücke als Abstandhalter ab und klebt dieses mit Sekundenkleber o. ä. auf das Kolbendach an der richtigen Stelle der Quetschspalte:

Auslitern Vespa 5.jpg

Wichtig ist vor allem bei aufgehender Quetschspalte die korrekte Positionierung des Lötzinns, sonst entstehen schnell grössere Messfehler!

Nun schiebt man den Kolben in den Zylinder bis zum Anschlag und fixiert ihn dort falls er nicht hält. Der Rest erfolgt wie in Variante 1.)

Variante 3.) Bestimmung der Einzelvolumen

Wer den Motor nicht ausbauen will, kann das Brennraumvolumen ebenfalls über die Einzelvolumen bestimmen und zusammenrechnen. Hierbei muss lediglich der Zylinderkopf abgenommen werden und der Kolben in der OT-Position arretiert werden. Vor allem bei im Zylinder versenkten Zylinderköpfen, wie dem Parmakit 177 oder dem BGM 177 ist dies zwar einfacher möglich, als bei Zylindern mit Kolbenüberstand (hier muss man sich mit zusätzlichen Dichtungen behelfen). In beiden Fällen wird man jedoch zuviel Volumen messen und muss es später entsprechend abziehen.

Zum Auslitern benötigt man eine Plexiglasscheibe als "Trennschicht". Sofern man die Einfüllbohrungen gut gewählt hat und die Plexiglasscheibe sich nicht wölbt, bekommt man auch hier gute Ergebnisse. Deshalb sollte die Plexiglasscheibe möglichst dick sein, auch damit beim Festschrauben keine Undichtigkeiten entstehen. Neben den vier Stehbolzenbohrungen, benötigt man ein Loch nahe der Zylinderwand exakt in der Grösse der Spritzendüse (Abdichtung!) und weiteres am Laufbahnrand, durch den die Luft entweichen kann. Je kleiner das später obenliegende Loch, umso vollständiger kann man den Zylinder befüllen aber umso länger dauert es. Im Beispielbild sieht man eine zu grosse Bohrung, die zu weit weg vom Zylinderrand gesetzt ist:

Auslitern Vespa 6.jpg

Auch hier dient Fett als "Dichtmasse". Wenn der Kolben im OT fixiert ist, kann durch das untere Loch befüllt werden. Bei Zylindern mit Kolbenüberstand, behilft man sich am besten über eine zusätzliche, möglichst plane Alukopfdichtungen, deren Volumen man errechnen kann und später wieder vom Messwert abzieht. Beim Zylinderkopf wird ähnlich vorgegangen. Je nach Zylinderkopf muss man vorsichtig sein, dass man die Platte mit den Schrauben nicht verformt! Eine 1mm Edelstahl-Kopfdichtung (gab’s mal bei den einschlägigen Shops) oder ein selbstgebauter Ring kann hier als Stabilisierung dienen. Sofern man die Schrauben nur mässig anzieht geht es auch ohne:

Auslitern Vespa 7.jpg

Sehr gut zu sehen, wie sich die Luftblasen im Bereich der Quetschspalte „halten“ obwohl der Kopf fast senkrecht steht. Dies würde man beim Auslitern nach 1.) nicht sehen, darum ist hier Klopfen und Schütteln sehr wichtig. Auch bei den „Tauchköpfen“ ist ein Auslitern möglich. Hier muss man den versenkten Teil vom gemessenen Volumen des Zylinders abziehen. Die Höhe des eintauchenden Teils muss dabei exakt bestimmt werden, um keine grösseren Messfehler zu machen: Wer für die Höhe beispielsweise statt 2.5mm nur 2.3mm misst, macht einen Fehler von 0.6 ccm/ml.

Auslitern Vespa 8.jpg

Der Vorteil der Variante 3.): Das Kerzenvolumen ist gleich mit berücksichtigt. Grössere Messfehler können beim Festschrauben der Plexiglasscheibe entstehen, wenn sich diese wölbt!


---Under Construction---


Die Kolbenringe müssen hierzu eingefettet werden, anschliessend stellt man den Kolben an den oberen Totpunkt (OT). Jetzt stellt man den Motor mit dem Zylinder senkrecht auf. Jetzt wird, am besten mit einer Spritze mit kleiner Skalenaufteilung, Öl in den Brennraum gegeben, bis das Öl die hälfte des Zündkerzengewindes erreicht. Nun lest ihr ab, wie viel in den Brennraum gepasst hat. Bei 50ccm Motoren liegt dies meist im Bereich zwischen 4-9cm³ (nur als Richtwert, kann abweichen).

Jetzt wird gemäß oben stehender Rechnung gerechnet: Hubraum + Brennraum / Brennraum

Bei unserem 50ccm Motor mit 5ccm Brennraumvolumen wären das dann: (50+5) / 5 = 11 Nun haben wir ein geometrisches Verdichtungsverhältnis von 11:1.

by redroostervogel

Literaturnachweise

  1. H.W.Bönsch, Der schnellaufende Zweitaktmotor-Grundlagen, S102ff
  2. Zweitakt Motoren Tuning, Teil 1, Christian Rieck, Seite 32 ff
  3. Zweitakt Motoren Tuning, Teil 1, Christian Rieck, Seite 38ff
  4. Zweitakt-Motoren Tuning, Teil 2, Roy Bacon, S28 ff
  5. H.W.Bönsch, Der schnellaufende Zweitaktmotor-Grundlagen, S102ff
  6. 2-takt Motoren Tuning, Christian Rieck, S.139ff